High altitude medicine

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Background

Altitude Stages

Stage Altitude Physiology
Intermediate Altitude 5,000 - 8,000 ft
(1,524 - 2,438 meters)
  • Decreased exercise performance without major impairment in SaO2
High Altitude 8,000 - 12,000 ft
(2,438 - 3,658 meters)
  • Decreased SaO2 with marked impairment during exercise and sleep
Very High Altitude 12,000-18,000 ft
(3,658 - 5,487 meters)
  • Abrupt ascent can be dangerous; acclimatization is required to prevent illness
Extreme Altitude >18,000 ft
(>5,500 meters)
  • Only experienced by mountain climbers; accompanied by severe hypoxemia and hypocapnia
  • Sustained human habitation is impossible
  • RV strain, intestinal malabsorption, impaired renal function, polycythemia

Height of Mount Everest (tallest in world): 29,035 feet (8,850 meters)

Height of Mount Whitney (tallest in contiguous US): 14,505 feet (4,421 meters)

Conversion: 1 meter = ~3.28 feet (calculator)

Physiology of Acclimatization

Ventilation

  • Increased elevation → decreased partial pressure of O2 → decreased PaO2
    • Hypoxic ventilatory response results in ↑ ventilation to maintain PaO2
    • Vigor of this inborn response relates to successful acclimatization
  • Initial hyperventilation is attenuated by respiratory alkalosis
    • As renal excretion of bicarb compensates for respiratory alkalosis, pH returns toward normal
  • Process of maximizing ventilation culminates within 4-7 days at a given altitude
    • With continuing ascent the central chemoreceptors reset to ever lower values of PaCO2
    • Completeness of acclimatization can be gauged by partial pressure of arterial CO2
    • Acetazolamide, which results in bicarb diuresis, can facilitate this process

Blood

  • Erythropoietin level begins to rise within 2 days of ascent to altitude
  • Takes days to weeks to significantly increase red cell mass
    • This adaptation is not important for the initial initial acclimatization process

Fluid Balance

  • Peripheral venoconstriction on ascent to altitude causes increase in central blood volume
    • This leads to decreased ADH → diuresis
    • This diuresis, along with bicarb diuresis, is considered a healthy response to altitude
      • One of the hallmarks of AMS is antidiuresis

Cardiovascular System

  • SV decreases initially while HR increases to maintain CO
  • Cardiac muscle in healthy patients can withstand extreme hypoxemia without ischemic events
  • Pulmonary circulation constricts with exposure to hypoxia
    • Degree of pulmonary hypertension varies; a hyper-reactive response is associated with HAPE

Differential Diagnosis

High Altitude Illnesses

High Altitude Syndromes

High altitude management algorithm.
  • All caused by hypoxia
  • All are seen in rapid ascent in unacclimatized patients
    • Hypoxemia is maximal during sleep; the altitude in which you sleep is most important
    • Above 10,000ft rule of thumb is to sleep no higher than 1,000 additional ft/day
  • All respond to O2/descent

Expected SpO2 and PaO2 levels at altitude[1]

Altitude SpO2 PaO2 (mm Hg)
1,500 to 3,500 m (4,900 to 11,500 ft) about 90% 55-75
3,500 to 5,500 m (11,500 to 18,000 ft) 75-85% 40-60
5,500 to 8,850 m (18,000 to 29,000 ft) 58-75% 28-40

See Also

References

  1. Gallagher, MD, Scott A.; Hackett, MD, Peter (August 28, 2018). "High altitude pulmonary edema". UpToDate. Retrieved May 2, 2019.