Hyperkalemia: Difference between revisions

Line 44: Line 44:


==Differential Diagnosis==
==Differential Diagnosis==
===Hyperkalemia===
{{Hyperkalemia}}
*Pseudohyperkalemia: hemolyzed specimen, prolonged [[tourniquet]] use prior to blood draw, thrombocytosis or leukocytosis
*Redistribution (shift from intracellular to extracellular space)
**Acidemia (see [[Diabetic ketoacidosis|DKA]])
**Cellular breakdown: see [[Rhabdomyolysis]]/[[Crush syndrome]], electrical/thermal [[burn]], hemolysis, see [[Tumor lysis syndrome]]
*Increased total body potassium
**Inadequate excretion: Acute/chronic renal failure, Addison's disease, type 4 RTA
**Drug-induced: potassium-sparing diuretic (spironolactone), angiotensin converting enzyme inhibitors (ACE-I), nonsteroidal anti-inflammatory drugs ([[NSAIDs]])
**Excessive intake: diet, blood transfusion
*Other causes: [[succinylcholine]], [[digitalis]], [[beta-blockers]]
 
{{Peaked T-waves DDX}}
{{Peaked T-waves DDX}}
{{Tachycardia (wide) DDX}}
{{Tachycardia (wide) DDX}}

Revision as of 06:42, 5 April 2019

Background

  • Defined as >5.5 mEq/L
  • Consider pseudohyperkalemia (e.g. from hemolysis)
  • Potassium secretion is proportional to flow rate and sodium delivery through distal nephron
    • Thus, loop & thiazide diuretics cause hypokalmia

Medication Causes

Alter transmembrane potassium movement

  • β blockers
  • Digoxin
  • Potassium-containing drugs
  • Potassium supplements
  • Salt substitutes
  • Hyperosmolar solutions (mannitol, glucose)
  • Suxamethonium
  • Intravenous cationic amino acids
  • Stored red blood cells (haemolysis releases potassium)
  • Herbal medicines (such as alfalfa, dandelion, horsetail, milkweed, and nettle)

Reduce aldosterone secretion

Block aldosterone binding to mineralocorticoid receptors

Clinical Features

Typically non-specific

Differential Diagnosis

Template:Hyperkalemia

Peaked T-waves

Wide-complex tachycardia

Assume any wide-complex tachycardia is ventricular tachycardia until proven otherwise (it is safer to incorrectly assume a ventricular dysrhythmia than supraventricular tachycardia with abberancy)

^Fixed or rate-related

Evaluation

ECG

Changes NOT always predictable and sequential

  • 6.5 - 7.5 mEq/L: peaked T waves, prolonged PR interval, shortened QT interval
  • 7.5 - 8.0 mEq/L: widened QRS interval, flattened P waves
  • 10 - 12 mEq/L: sine wave, ventricular fibrillation, heart block

Management

Stabilize cardiac membranes

Indicated if there are any ECG changes or evidence of arrhythmias. Consider if K >7 mEq/L

  • Either one of the following:
    • Calcium gluconate: Give 10ml of a 10% solution over 10 mins
      • Only 1/3 the calcium compared to calcium chloride
      • Can cause hypotension due to osmotic shift
    • Calcium chloride 1 gram IV
      • Give over 1 - 2 minutes
      • Extravasation is bad: use a good IV
      • Usually given in code situations
  • Takes effect in 15-30 minutes[1]
    • (If given for hyperkalemic cardiac arrest, need to continue resuscitation for at least 30 minutes)
  • Duration of action: 30 - 60 minutes [2]
  • Use caution in patients taking Digoxin although risk of Stone heart may be unsubstantiated [3]
  • Do serial ECGs to track progress: may need to give multiple doses

Shift K+ intracellularly

  • Intravenous insulin + dextrose
    • Give 10 units regular insulin intravenously with 25 to 50 grams (1 - 2 50 mL ampules) of 50% dextrose (D50)
      • May withhold dextrose if blood sugar >300mg/dl (>17 mmol/L)
      • Duration of effect: 4 - 6 hours
      • Consider mixing in 10 cc NS syringe to ensure small volume of 10 units insulin fully administered via IV
      • Insulin cleared renally, be careful about inducing hypoglycemia (ESRD patients).
        • In a small 2017 retrospective cohort study, researchers found that giving 5 units of insulin instead of 10 units reduced serum potassium to the same extent as 10 units, with a lower rate of hypoglycemia.
  • Nebulized albuterol 5 - 20mg
    • Response is dose-dependent
    • Peak effect: 30 minutes
    • Duration of effect: 2 hours
  • Intravenous sodium bicarbonate 50ml of 8.4% solution (1 ampoule) given over 5 minutes
    • Duration of effect: 1 - 2 hours
    • Generally not required, unless pH <7.1

Remove K+ from body

Disposition

  • Consideration for ICU for frequent electrolyte checks and close cardiac monitoring

See Also

External Links

References

  1. http://lifeinthefastlane.com/hyperkalemia/. Accessed 02/22/2016
  2. The Effect of Calcium on Severe Hyperkalemia http://hqmeded-ecg.blogspot.com/2015/04/the-effect-of-calcium-on-severe.html
  3. Erickson CP, Olson KR. Case files of the medical toxicology fellowship of the California poison control system-San Francisco: calcium plus digoxin-more taboo than toxic? J Med Toxicol. 2008 Mar;4(1):33-9