Massive transfusion
(Redirected from MTP)
This page is for adult patients. For pediatric patients, see: massive transfusion (peds)
Background
- Massive transfusion protocol (MTP) has no universal definition but is generally considered as:
- Transfusion of >10 units of packed red blood cells within a 24-hour period OR
- Transfusion of >4 units of packed red blood cells within 1 hour, with anticipation of requiring more transfusion within the next 24 hours
- Replacement of >1 blood volume in 24 h or >50% of the blood volume in 4 h
- In addition to controlling hemorrhage the greatest concern during MTP is the lethal triad:[2]
- Trauma Associated Coagulopathy[3]
- Platelet defects (worse with TBI), endothelial injury, and loss of coagulation factors and platelets through hemorrhage consumption of platelets and coagulation factors
- During MTP, focus is on "balanced resuscitation" with clotting factors (FFP) and platelets”[4]
- The PROPPR trial[5] examined a 1:1:1 (FFP:Plt:pRBC) vs 1:1:2 protocol. There was no difference in mortality at 1 or 30 days; however, the 1:1:1 group experienced less death due to exsanguination in the first day.
- The goal of MTP is to resuscitate and temporize management until definitive operative repair can be accomplished.
- MTP should follow should follow local institutional protocols[6]
Indications
- Hemorrhagic shock is the only indication for a massive transfusion
- The ABC score and the TASH score predict the need for MTP
- Newer studies[7] show that the Shock Index score is a better predictor than the ABC score
- Revised Assessment of Bleeding and Transfusion (RABT) may reach higher sensitivity than ABC score, but not prospectively validated as of 2019
ABC Score[8]
- Non-lab scoring system as opposed to TASH:
- Penetrating mechanism
- SBP ≤90 in ED
- HR ≥120 in ED
- Positive FAST
- Scoring interpretation:
- 0-1, not likely to require MTP (≥10 units pRBCs)
- 2-4, likely to require MTP, sensitivity 75% and specificity 86% from original study[9]
- Subsequent studies suggested < 50% sensitivity
Shock Index
- SI = HR / SBP
- Particularly useful in patients with pre-hospital SBP >90 mmHg
- Pre-hospital SI >0.9 suggestive of need for MTP[10][11]
RABT
- RABT score ≥ 2 of the following predicts need for MTP:
- Shock index > 1.0
- Pelvic fracture
- Positive FAST
- Penetrating injury
- Sensitivity 84%, specificity 77%[12]
Adjunctive Agents
- Tranexamic acid (TXA) lowers risk of death if administed in less then 3 hours after injury in trauma patients with significant hemorrhage (CRASH-2 trail)[13]
- Thromboelastography (TEG) has been extensively studied in cardiac surgery and quantifies the coagulation cascade
- Factor VII, studied in the CONTROL trial, showed no mortality benefit and was terminated early[14]
- Other studies of Factor VII have raised concerns for MI and adverse thrombotic events
- Consider giving calcium and magnesium IV supplementation if approaching > 4 units of pRBCs
Example Protocol
MTP pack contains 6 units RBCs and 4 units FFP (O neg uncrossmatched rbc's and AB FFP until completed screen)
- Attending physician activates protocol
- Charge nurse contacts blood bank and sends runner to pick up MTP pack
- TEG is drawn
- First MTP pack is delivered within 30min of ordering
- Transfusion continues until patient expires or is hemodynamicallys stable with cessation of bleeding
- If second pack is ordered it contains an additional single donor platelet pack (six-pack)
- The third pack substitutes cryoprecipitate for platelets
- PT, aPTT, and Fibrinogen is ordered q2 hours for the duration of the massive transfusion event
Complications[15]
- Hypothermia
- Dilutional coagulopathy
- Hypocalcemia and hypomagnesemia from high citrate concentration
- Lactic acidosis from inability to breakdown citrate secondary to to hepatic dysfunction
- Hyperkalemia
- Air embolism
- Metabolic alkalosis from breakdown of citrate
- TRALI
External Links
- MDCalc - ABC score
- MDCalc - Shock Index
- Massive Transfusion Protocol on Internet Book of Critical Care
See Also
References
- ↑ Mikhail J. The trauma triad of death: hypothermia, acidosis, and coagulopathy. AACN Clin Issues. 1999;10(1):85-94.
- ↑ Kashuk JL, et al. Major abdominal vascular trauma — A unified approach. J Trauma. 1982;22(8):672–679.
- ↑ http://rebelem.com/ten-trauma-resuscitation-commandments/
- ↑ Spinella PC. Resuscitation and transfusion principles for traumatic hemorrhagic shock. Blood Rev. Blood Rev. 2009 Nov;23(6):231-40.
- ↑ Holcomb J. et al. Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma The PROPPR Randomized Clinical Trial JAMA. 2015
- ↑ ACS TQIP Massive Transfusion in Trauma Guidelines fulltext
- ↑ Accuracy Of Shock Index Versus ABC Score To Predict Need For Massive Transfusion In Trauma Patients Schroll, R., et al, Injury 49(1):15, January 2018
- ↑ Nunez TC et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009 Feb;66(2):346-52.
- ↑ Schroll R et al. Accuracy of shock index versus ABC score to predict need for massive transfusion in trauma patients. Injury 2018 Jan;49(1):15-19.
- ↑ Cannon CM et al. Utility of the shock index in predicting mortality in traumatically injured patients. J Trauma. 2009 Dec;67(6):1426-30.
- ↑ Vandromme MJ et al. Identifying risk for massive transfusion in the relatively normotensive patient: utility of the prehospital shock index. J Trauma. 2011 Feb;70(2):384-8; discussion 388-90.
- ↑ Joseph B et al. Massive Transfusion: The Revised Assessment of Bleeding and Transfusion (RABT) Score. World J Surg 2018 Nov 42(11): 3560-3567.
- ↑ Shakur H, et al. "Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage". The Lancet. 2010. 376(9734):23-32.
- ↑ Hauser CJ. et al. Results of the CONTROL trial: efficacy and safety of recombinant activated Factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010 Sep;69(3):489-500.
- ↑ Roback JD (ed). Non-infectious complications of blood transfusion. Chapter 27, AABB Technical Manual, 17th edition. AABB, Bethesda, 2011.